organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diisopropyl [(benzoylamino)(phenyl)methyl]phosphonate

Hua Fang,^a* Mei-Juan Fang,^b Ying Xu,^b Wen-Cheng Yu^b and Yu-Fen Zhao^c

^aThe Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, People's Republic of China, ^bDepartment of Pharmaceutical Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China, and ^cDepartment of Chemistry, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: fangmj@xmu.edu.cn

Received 13 February 2009; accepted 21 February 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.174; data-to-parameter ratio = 14.5.

The title compound, $C_{20}H_{26}NO_4P$, has been obtained by the reaction of benzoyl chloride and diisopropyl[amino(phenyl)methyl]phosphonate. The dihedral angle between the planes of the benzoylamino group and the phenyl ring is $77.0 (2)^{\circ}$. The crystal structure is stabilized by strong intermolecular N-H···O hydrogen bonds between the doubly bonded phosphoryl O atom and the amide N atom which link the molecules into pairs about a center of symmetry.

Related literature

For the biological activity and pharmaceutical interest of α hydroxyphosphonic acid esters, see: Stowasser et al. (1992); Chen et al. (1995). For their use as reagents in the synthesis of enol ethers and a-ketophosphonates, see: Babak & Rahman (2001). For the synthesis, see: Drescher et al. (1995). For bond lengths and angles in related compunds, see: Smaardijk et al. (1985).

Experimental

Crystal data

$C_{20}H_{26}NO_4P$	$\gamma = 60.470 \ (6)^{\circ}$
$M_r = 375.39$	V = 987.3 (7) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 10.839 (4) Å	Mo $K\alpha$ radiation
b = 10.925 (5) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 11.057 (5) Å	T = 273 K
$\alpha = 61.364 \ (8)^{\circ}$	$0.28 \times 0.21 \times 0.05 \text{ mm}$
$\beta = 83.362 \ (8)^{\circ}$	

Data collection

Bruker SMART APEX areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.956, T_{\max} = 0.992$

Refinement

v S

3

$R[F^2 > 2\sigma(F^2)] = 0.065$	235 parameters
$vR(F^2) = 0.174$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
411 reflections	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

4991 measured reflections

 $R_{\rm int} = 0.042$

3411 independent reflections

2509 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geomet	try (A, °).
----------------------	-------------

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N1 - H1A \cdots O2^{i}$ 0.86 2.05 2.895 (3) 165

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 40806032) and the Scientific Research Foundation of the Third Institute of Oceanography, SOA (No. 2009005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2235).

References

Babak, K. & Rahman, N. (2001). Synth. Commun. 31, 2245-2250.

- Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Chen, R., Liu, L. & Zhang, Z. (1995). Heteroatom. Chem. 6, 503-506.
- Drescher, M., Hammerschmidt, F. & Kählig, H. (1995). Synthesis, 10, 1267-1272

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smaardijk, Ab. A., Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett. 26, 493-496.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stowasser, B., Budt, K.-H., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett. 33, 6625-6628.

Acta Cryst. (2009). E65, o642 [doi:10.1107/S1600536809006382]

Diisopropyl [(benzoylamino)(phenyl)methyl]phosphonate

H. Fang, M.-J. Fang, Y. Xu, W.-C. Yu and Y.-F. Zhao

Comment

In recent years α -hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser *et al.*, 1992) and pharmaceutical interest (Chen *et al.*, 1995). They are useful reagents for the synthesis of enol ethers and α -ketophosphonates (Babak *et al.*, 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk *et al.*, 1985). The dihedral angle between the planes of the benzoylamino group and phenyl ring is 103.0 (2)° (Fig. 1). The amide N atom is involved in a hydrogen-bonding interaction with the phosphoryl O atom of a neighboring molecule linking the molecules into pairs around a centerof symmetry (Table 1 and Fig. 2).

Experimental

A solution of dry dichloromethane (20 ml) containing (amino-phenyl-methyl)-phosphonic acid diisopropyl ester (1 mmol, 0.27 g) and triethylamine (0.4 ml) was added dropwise to a solution of dichloromethane (10 ml) containing benzoyl chloride (1.2 mmol, 0.17 g). The reaction mixture was stirred for 6 h at room temperature and the solvent was then removed under reduced pressure to give a residue, which was extracted with ethyl acetate (3×15 ml). The solution was dried over anhydrous MgSO₄ and concentrated under vacuum to obtain a slurry residue, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1) to give (I) as a colorless amorphous solid (Drescher, *et al.*, 1995). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether/dichloromethane solution (1:1 v/v).

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (CH₃) or 0.98 (CH), N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}$ (aromatic C, CH and N) or 1.5 U_{eq} (methyl C).

Figures

Fig. 1. The title molecule showing the anisotropic displacement parameters of the non-hydrogen atoms at the 30% probability level. The H atoms are drawn as spheres of arbitrary radii.

Fig. 2. Packing diagram of title compound, showing the N—H…O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x +1, -y + 2, -z + 1)].

Fig. 3. The formation of the title compound.

Diisopropyl [(benzoylamino)(phenyl)methyl]phosphonate

Crystal data	
$C_{20}H_{26}NO_4P$	Z = 2
$M_r = 375.39$	$F_{000} = 400$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.263 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.839 (4) Å	Cell parameters from 1689 reflections
b = 10.925 (5) Å	$\theta = 2.3 - 27.7^{\circ}$
c = 11.057 (5) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\alpha = 61.364 \ (8)^{\circ}$	T = 273 K
$\beta = 83.362 \ (8)^{\circ}$	Chunk, colorless
$\gamma = 60.470 \ (6)^{\circ}$	$0.28\times0.21\times0.05~mm$
V = 987.3 (7) Å ³	

Data collection

Bruker APEX area-detector diffractometer	3411 independent reflections
Radiation source: fine-focus sealed tube	2509 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 273 K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker, 2001)	$h = -12 \rightarrow 12$
$T_{\min} = 0.956, T_{\max} = 0.992$	$k = -12 \rightarrow 12$
4991 measured reflections	$l = -10 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.065$ H-atom parameters constrained $wR(F^2) = 0.174$ $w = 1/[\sigma^2(F_o^2) + (0.097P)^2]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 0.98S = 0.98 $(\Delta/\sigma)_{max} < 0.001$ 3411 reflections $\Delta\rho_{max} = 0.60$ e Å⁻³235 parameters $\Delta\rho_{min} = -0.44$ e Å⁻³Primary atom site location: structure-invariant direct Γ_{v} tick time structure struc

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.0000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.73254 (8)	0.85680 (9)	0.47527 (8)	0.0311 (3)
N1	0.6453 (2)	0.6827 (3)	0.6988 (3)	0.0310 (6)
H1A	0.5566	0.7577	0.6718	0.037*
01	0.8049 (2)	0.4184 (2)	0.8105 (3)	0.0546 (7)
C1	0.6797 (3)	0.5282 (4)	0.7762 (3)	0.0339 (7)
O2	0.6331 (2)	1.0278 (2)	0.4252 (2)	0.0412 (6)
C2	0.5598 (3)	0.4933 (3)	0.8226 (3)	0.0336 (7)
03	0.6811 (2)	0.7980 (2)	0.3986 (2)	0.0400 (6)
C3	0.5965 (4)	0.3371 (4)	0.9147 (4)	0.0505 (9)
H3A	0.6928	0.2572	0.9424	0.061*
O4	0.8922 (2)	0.8119 (2)	0.4564 (2)	0.0401 (6)
C4	0.4921 (4)	0.2969 (5)	0.9671 (4)	0.0602 (11)
H4A	0.5182	0.1906	1.0313	0.072*
C5	0.3507 (4)	0.4130 (5)	0.9247 (4)	0.0514 (9)
H5A	0.2804	0.3859	0.9603	0.062*
C6	0.3123 (4)	0.5681 (4)	0.8304 (4)	0.0549 (10)
H6A	0.2158	0.6472	0.8006	0.066*
C7	0.4171 (3)	0.6079 (4)	0.7792 (4)	0.0505 (9)
H7A	0.3905	0.7142	0.7142	0.061*
C8	0.7582 (3)	0.7231 (3)	0.6607 (3)	0.0305 (7)
H8A	0.8470	0.6220	0.6812	0.037*
C9	0.7819 (3)	0.7826 (3)	0.7489 (3)	0.0307 (7)
C10	0.6722 (3)	0.9170 (4)	0.7536 (3)	0.0431 (8)
H10A	0.5844	0.9768	0.6961	0.052*

C11	0.6917 (4)	0.9627 (4)	0.8423 (4)	0.0531 (9)
H11A	0.6166	1.0523	0.8456	0.064*
C12	0.8210 (4)	0.8774 (5)	0.9261 (4)	0.0562 (10)
H12A	0.8336	0.9095	0.9856	0.067*
C13	0.9309 (4)	0.7456 (5)	0.9221 (4)	0.0526 (9)
H13A	1.0191	0.6879	0.9784	0.063*
C14	0.9111 (3)	0.6979 (4)	0.8344 (3)	0.0398 (8)
H14A	0.9862	0.6070	0.8329	0.048*
C15	0.7424 (4)	0.6316 (4)	0.4291 (4)	0.0435 (8)
H15A	0.7990	0.5581	0.5230	0.052*
C16	0.6184 (4)	0.6079 (5)	0.4248 (4)	0.0608 (10)
H16A	0.5615	0.6255	0.4942	0.091*
H16B	0.6538	0.5000	0.4432	0.091*
H16C	0.5604	0.6832	0.3342	0.091*
C17	0.8383 (4)	0.6056 (5)	0.3243 (4)	0.0635 (11)
H17A	0.9161	0.6209	0.3328	0.095*
H17B	0.7841	0.6815	0.2319	0.095*
H17C	0.8758	0.4979	0.3409	0.095*
C18	0.9332 (4)	0.9289 (4)	0.3580 (4)	0.0458 (8)
H18A	0.8731	1.0307	0.3593	0.055*
C19	0.9101 (5)	0.9581 (6)	0.2149 (4)	0.0810 (14)
H19A	0.8101	1.0015	0.1875	0.121*
H19B	0.9658	0.8583	0.2131	0.121*
H19C	0.9393	1.0334	0.1513	0.121*
C20	1.0845 (4)	0.8639 (6)	0.4093 (5)	0.0816 (14)
H20A	1.0916	0.8510	0.5009	0.122*
H20B	1.1162	0.9373	0.3470	0.122*
H20C	1.1438	0.7612	0.4133	0.122*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0254 (4)	0.0278 (5)	0.0360 (5)	-0.0115 (3)	0.0062 (3)	-0.0149 (4)
N1	0.0210 (12)	0.0262 (13)	0.0398 (14)	-0.0105 (10)	0.0066 (11)	-0.0139 (12)
01	0.0308 (12)	0.0297 (13)	0.0752 (18)	-0.0100 (10)	0.0017 (12)	-0.0102 (13)
C1	0.0348 (17)	0.0299 (17)	0.0363 (17)	-0.0170 (14)	0.0064 (14)	-0.0150 (15)
O2	0.0342 (11)	0.0288 (12)	0.0497 (13)	-0.0118 (9)	0.0050 (10)	-0.0155 (11)
C2	0.0407 (17)	0.0328 (17)	0.0343 (17)	-0.0228 (15)	0.0099 (14)	-0.0176 (15)
O3	0.0379 (12)	0.0357 (12)	0.0442 (12)	-0.0141 (10)	0.0030 (10)	-0.0217 (11)
C3	0.049 (2)	0.036 (2)	0.054 (2)	-0.0231 (17)	0.0061 (18)	-0.0111 (18)
O4	0.0284 (11)	0.0367 (12)	0.0448 (13)	-0.0162 (10)	0.0120 (10)	-0.0142 (11)
C4	0.075 (3)	0.050 (2)	0.055 (2)	-0.046 (2)	0.011 (2)	-0.011 (2)
C5	0.059 (2)	0.073 (3)	0.052 (2)	-0.051 (2)	0.0245 (19)	-0.035 (2)
C6	0.0391 (19)	0.055 (2)	0.077 (3)	-0.0298 (18)	0.0200 (19)	-0.032 (2)
C7	0.0383 (18)	0.0377 (19)	0.070 (2)	-0.0226 (16)	0.0128 (18)	-0.0197 (19)
C8	0.0236 (14)	0.0258 (16)	0.0400 (17)	-0.0107 (12)	0.0052 (13)	-0.0164 (15)
C9	0.0266 (15)	0.0321 (17)	0.0336 (16)	-0.0164 (13)	0.0097 (13)	-0.0155 (15)
C10	0.0386 (18)	0.0392 (19)	0.0472 (19)	-0.0152 (15)	0.0013 (16)	-0.0216 (17)

C11	0.057 (2)	0.050 (2)	0.059 (2)	-0.0245 (19)	0.012 (2)	-0.035 (2)
C12	0.080 (3)	0.068 (3)	0.052 (2)	-0.053 (2)	0.019 (2)	-0.036 (2)
C13	0.052 (2)	0.066 (2)	0.044 (2)	-0.040 (2)	0.0010 (18)	-0.018 (2)
C14	0.0338 (17)	0.0424 (19)	0.0400 (17)	-0.0211 (15)	0.0077 (15)	-0.0163 (16)
C15	0.0454 (19)	0.0363 (18)	0.048 (2)	-0.0177 (15)	0.0026 (17)	-0.0213 (17)
C16	0.064 (2)	0.068 (3)	0.072 (3)	-0.041 (2)	0.019 (2)	-0.043 (2)
C17	0.058 (2)	0.068 (3)	0.082 (3)	-0.033 (2)	0.033 (2)	-0.052 (3)
C18	0.0456 (19)	0.044 (2)	0.049 (2)	-0.0285 (17)	0.0128 (17)	-0.0182 (18)
C19	0.095 (3)	0.108 (4)	0.050 (2)	-0.073 (3)	0.020 (2)	-0.023 (3)
C20	0.063 (3)	0.094 (3)	0.074 (3)	-0.056 (3)	0.006 (2)	-0.013 (3)

Geometric parameters (Å, °)

P1—O2	1.456 (2)	C10—H10A	0.9300
P1—O3	1.559 (2)	C11—C12	1.369 (5)
P1—O4	1.567 (2)	C11—H11A	0.9300
P1—C8	1.809 (3)	C12—C13	1.361 (5)
N1-C1	1.337 (4)	C12—H12A	0.9300
N1—C8	1.451 (4)	C13—C14	1.379 (5)
N1—H1A	0.8600	C13—H13A	0.9300
01—C1	1.226 (3)	C14—H14A	0.9300
C1—C2	1.498 (4)	C15—C16	1.498 (5)
C2—C3	1.365 (4)	C15—C17	1.500 (5)
C2—C7	1.370 (4)	C15—H15A	0.9800
O3—C15	1.460 (4)	C16—H16A	0.9600
C3—C4	1.380 (5)	C16—H16B	0.9600
С3—НЗА	0.9300	C16—H16C	0.9600
O4—C18	1.460 (4)	C17—H17A	0.9600
C4—C5	1.363 (5)	C17—H17B	0.9600
C4—H4A	0.9300	C17—H17C	0.9600
C5—C6	1.358 (5)	C18—C20	1.482 (5)
С5—Н5А	0.9300	C18—C19	1.483 (5)
C6—C7	1.380 (5)	C18—H18A	0.9800
С6—Н6А	0.9300	C19—H19A	0.9600
С7—Н7А	0.9300	C19—H19B	0.9600
С8—С9	1.507 (4)	C19—H19C	0.9600
C8—H8A	0.9800	C20—H20A	0.9600
C9—C14	1.378 (4)	C20—H20B	0.9600
C9—C10	1.382 (4)	C20—H20C	0.9600
C10-C11	1.370 (4)		
O2—P1—O3	109.31 (12)	C10—C11—H11A	119.7
O2—P1—O4	114.66 (12)	C13—C12—C11	119.9 (3)
O3—P1—O4	108.59 (12)	C13—C12—H12A	120.0
O2—P1—C8	116.66 (13)	C11—C12—H12A	120.0
O3—P1—C8	107.29 (13)	C12—C13—C14	119.7 (3)
O4—P1—C8	99.67 (12)	C12—C13—H13A	120.1
C1—N1—C8	119.7 (2)	C14—C13—H13A	120.1
C1—N1—H1A	120.1	C9—C14—C13	121.2 (3)
C8—N1—H1A	120.1	C9—C14—H14A	119.4

01—C1—N1	121.6 (3)	C13—C14—H14A	119.4
O1—C1—C2	120.7 (3)	O3—C15—C16	106.6 (3)
N1—C1—C2	117.7 (3)	O3—C15—C17	108.8 (3)
C3—C2—C7	118.6 (3)	C16—C15—C17	113.3 (3)
C3—C2—C1	117.3 (3)	O3—C15—H15A	109.4
C7—C2—C1	124.1 (3)	С16—С15—Н15А	109.4
C15—O3—P1	126.33 (19)	С17—С15—Н15А	109.4
C2—C3—C4	120.6 (3)	С15—С16—Н16А	109.5
С2—С3—НЗА	119.7	C15—C16—H16B	109.5
С4—С3—Н3А	119.7	H16A—C16—H16B	109.5
C18—O4—P1	123.20 (19)	C15—C16—H16C	109.5
C5—C4—C3	120.0 (3)	H16A—C16—H16C	109.5
С5—С4—Н4А	120.0	H16B—C16—H16C	109.5
C3—C4—H4A	120.0	C15—C17—H17A	109.5
C6—C5—C4	120.1 (3)	С15—С17—Н17В	109.5
С6—С5—Н5А	119.9	H17A—C17—H17B	109.5
С4—С5—Н5А	119.9	С15—С17—Н17С	109.5
C5—C6—C7	119.7 (3)	H17A—C17—H17C	109.5
С5—С6—Н6А	120.2	H17B—C17—H17C	109.5
С7—С6—Н6А	120.2	O4—C18—C20	106.7 (3)
C2—C7—C6	121.0 (3)	O4—C18—C19	110.1 (3)
С2—С7—Н7А	119.5	C20-C18-C19	113.7 (4)
С6—С7—Н7А	119.5	O4—C18—H18A	108.7
N1—C8—C9	112.6 (2)	C20-C18-H18A	108.7
N1—C8—P1	112.04 (18)	C19—C18—H18A	108.7
C9—C8—P1	113.18 (19)	С18—С19—Н19А	109.5
N1—C8—H8A	106.1	C18—C19—H19B	109.5
С9—С8—Н8А	106.1	H19A—C19—H19B	109.5
P1—C8—H8A	106.1	C18—C19—H19C	109.5
C14—C9—C10	118.1 (3)	H19A—C19—H19C	109.5
C14—C9—C8	120.7 (3)	H19B—C19—H19C	109.5
C10—C9—C8	121.0 (2)	C18—C20—H20A	109.5
С11—С10—С9	120.5 (3)	C18—C20—H20B	109.5
C11—C10—H10A	119.7	H20A—C20—H20B	109.5
C9—C10—H10A	119.7	C18—C20—H20C	109.5
C12-C11-C10	120.5 (3)	H20A-C20-H20C	109.5
C12—C11—H11A	119.7	H20B—C20—H20C	109.5
C8—N1—C1—O1	-3.5 (4)	O2—P1—C8—N1	82.0 (2)
C8—N1—C1—C2	175.2 (2)	O3—P1—C8—N1	-40.9 (2)
O1—C1—C2—C3	6.2 (4)	O4—P1—C8—N1	-153.99 (19)
N1—C1—C2—C3	-172.5 (3)	O2—P1—C8—C9	-46.6 (2)
O1—C1—C2—C7	-174.3 (3)	O3—P1—C8—C9	-169.52 (19)
N1—C1—C2—C7	7.0 (4)	O4—P1—C8—C9	77.4 (2)
O2—P1—O3—C15	-173.2 (2)	N1-C8-C9-C14	116.7 (3)
O4—P1—O3—C15	61.0 (3)	P1-C8-C9-C14	-115.0 (3)
C8—P1—O3—C15	-45.8 (3)	N1-C8-C9-C10	-58.9 (4)
C7—C2—C3—C4	-2.5 (5)	P1C8C10	69.4 (3)
C1—C2—C3—C4	177.0 (3)	C14—C9—C10—C11	-0.7 (5)
O2—P1—O4—C18	-19.8 (3)	C8—C9—C10—C11	174.9 (3)

O3—P1—O4—C18	102.8 (2)	С9—	-C10-C11-C12		1.0 (5)
C8—P1—O4—C18	-145.1 (2)	C10-			-0.4 (6)
C2—C3—C4—C5	1.4 (6)	C11-			-0.5 (6)
C3—C4—C5—C6	0.3 (6)	C10-			-0.2 (5)
C4—C5—C6—C7	-0.8 (5)	C8—	-C9-C14-C13		-175.8 (3)
C3—C2—C7—C6	2.0 (5)	C12-			0.8 (5)
C1—C2—C7—C6	-177.4 (3)	P1—	-O3—C15—C16		136.8 (3)
C5—C6—C7—C2	-0.4 (6)	P1—	-O3—C15—C17		-100.8 (3)
C1—N1—C8—C9	-101.9 (3)	P1—	-O4—C18—C20		156.8 (3)
C1—N1—C8—P1	129.2 (2)	P1—	-O4—C18—C19		-79.4 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	$D \cdots A$	D—H···A

	D II	11 /1	D Π	
N1—H1A····O2 ⁱ	0.86	2.05	2.895 (3)	165

Symmetry codes: (i) -x+1, -y+2, -z+1.

Fig. 1

Fig. 2

Fig. 3

